6.1 Basics of counting

- Combinatorics: they study of arrangements of objects
- Enumeration: the counting of objects with certain properties (an important part of combinatorics)
 - Enumerate the different telephone numbers possible in US
 - The allowable password on a computer
 - The different orders in which runners in a race can reach

- Suppose a password on a system consists of 6,
 7, or 8 characters
- Each of these characters must be a digit or a letter of the alphabet
- Each password must contain at least one digit
- How many passwords are there?

Basic counting principles

- Two basic counting principles
 - Product rule
 - Sum rule
- Product rule: suppose that a procedure can be broken down into a sequence of two tasks
- If there are n₁ ways to do the 1st task, and each of these there are n₂ ways to do the 2nd task, then there are n₁·n₂ ways to do the procedure

- The chairs of a room to be labeled with a letter and a positive integer not exceeding 100. What is the largest number of chairs that can be labeled differently?
- There are 26 letters to assign for the 1st part and 100 possible integers to assign for the 2nd part, so there are 26·100=2600 different ways to label chairs

Product rule

Suppose that a procedure is carried out by performing the tasks T₁, T₂, ..., T_m in sequence. If each task T_i, i=1, 2, ..., n can be done in n_i ways, regardless of how the previous tasks were done, then there are n₁·n₂· ..·n_m ways to carry out the procedure

- How many different license plates are available if each plate contains a sequence of 3 letters followed by 3 digits (and non sequences of letters are prohibited, even if they are obscene)?
- License plate _ _ _ : There are 26 choices for each letter and 10 choices for each digit. So, there are 26·26·26·10·10·10 = 17,576,000 possible license plates

Counting functions

- How many functions are there from a set with m elements to a set with n elements?
- A function corresponds to one of the n elements in the codomain for each of the m elements in the domain
- Hence, by product rule there are n·n...·n=n^m functions from a set with m elements to one with n elements

Counting one-to-one functions

- How many one-to-one functions are there from a set with m elements to one with n elements?
- First note that when m>n there are no one-to-one functions from a set with m elements to one with n elements
- Let m \le n. Suppose the elements in the domain are a_1 , a_2 , ..., a_m . There are n ways to choose the value for the value at a_1
- As the function is one-to-one, the value of the function at a₂ can be picked in n-1 ways (the value used for a₁ cannot be used again)
- Using the product rule, there are n(n-1)(n-2)...(n-m+1) one-toone functions from a set with m elements to one with n elements

• From a set with 3 elements to one with 5 elements, there are 5·4·3=60 one-to-one functions

- The format of telephone numbers in north
 America is specified by a numbering plan
- It consists of 10 digits, with 3-digit area code,
 3-digit office code and 4-digit station code
- Each digit can take one form of
 - X: 0, 1, ..., 9
 - N: 2, 3, ..., 9
 - Y: 0, 1

- In the old plan, the formats for area code, office code, and station code are NYX, NNX, and XXXX, respectively
- So the phone numbers had NYX-NNX-XXXX
- NYX: 8-2-10=160 area codes

 X: 0, 1, ..., 9
 N: 2, 3, ..., 9
- NNX: 8-8-10=640 office codes Y: 0, 1
- XXXX:10·10·10·10=10,000 station codes
- So, there are 160·640·10,000 = 1,024,000,000 phone numbers

- In the new plan, the formats for area code, office code, and station code are NXX, NXX, and XXXX, respectively
- So the phone numbers had NXX-NXX-XXXX
- NXX: 8·10·10=800 area codes
- NXX: 8·10·10=800 office codes
- XXXX:10·10·10·10=10,000 station codes
- So, there are 800·800·10,000 = 6,400,000,000 phone numbers

Product rule

- If A₁, A₂, ..., A_m are finite sets, then the number of elements in the Cartesian product of these sets is the product of the number of elements in each set
- $|A_1 \times A_2 \times ... \times A_m| = |A_1| \times |A_2| \times ... \times |A_m|$

Sum rule

- If a task can be done either in one of n₁ ways or in one of n₂ ways, where none of the set of n₁ ways is the same as any of the set of n₂ ways, then there are n₁+n₂ ways to do the task
- Example: suppose either a member of faculty or a student in CSE is chosen as a representative to a university committee. How many different choices are there for this representative if there are 8 members in faculty and 200 students?
- There are 8+200=208 ways to pick this representative

Sum rule

• If A₁, A₂, ..., A_m are disjoint finite sets, then the number of elements in the union of these sets is as follows

$$|A_1UA_2U...UA_m| = |A_1| + |A_2| + ... + |A_m|$$

More complex counting problems

- In a version of the BASIC programming language, the name of a variable is a string of 1 or 2 alphanumeric characters, where uppercase and lowercase letters are not distinguished.
- Moreover, a variable name must begin with a letter and must be different from the five strings of two characters that are reserved for programming use
- How many different variables names are there?
- Let V₁ be the number of these variables of 1 character, and likewise V₂ for variables of 2 characters
- So, V_1 =26, and V_2 =26·36-5=931
- In total, there are 26+931=957 different variables

- Each user on a computer system has a password, which is 6 to 8 characters long, where each character is an uppercase letter or a digit. Each password must contain at least one digit. How many possible passwords are there?
- Let P be the number of all possible passwords and $P=P_6+P_7+P_8$ where P_i is a password of i characters
- $P_6 = 36^6 26^6 = 1,867,866,560$
- $P_7 = 36^7 26^7 = 70,332,353,920$
- $P_8 = 36^8 26^8 = 208,827,064,576$
- $P=P_6+P_7+P_8=2,684,483,063,360$

Example: Internet address

© The McGraw-Hill Companies, Inc. all rights reserved.

Bit Number	0	1	2	3	4	8	16	24	31	
Class A	0			ne	tid		hostid			
Class B	1	0				netid		hostid		
Class C	1	1	0		netid			hostid		
Class D	1	1	1	0	Multicast Address					
Class E	1	1	1	1	0 Address					

- Internet protocol (IPv4)
 - Class A: largest network
 - Class B: medium-sized networks
 - Class C : smallest networks
 - Class D: multicast (not assigned for IP address)
 - Class E: future use
 - Some are reserved: netid 1111111, hostid all 1's and 0's
- Neither class D or E addresses are assigned as the IPv4 addresses
- How may different IPv4 addresses are available?

Example: Internet address

© The McGraw-Hill Companies, Inc. all rights reserved.

Bit Number	0	1	2	3	4	8	16	24	31	
Class A	0			ne	tid		hostid			
Class B	1	0				netid		hostid		
Class C	1	1	0			netid	7,5	hostid		
Class D	1	1	1	0	Multicast Address					
Class E	1	1	1	1	0	0 Address				

- Let the total number of address be x, and $x=x_A+x_B+x_C$
- Class A: there are 2^7 -1=127 netids (1111111 is reserved). For each netid, there are 2^{24} -2=16,777,214 hostids (as hostids of all 0s and 1s are reserved), so there are x_A =127·16,777,214=2,130,706,178 addresses
- Class B, C: 2^{14} =16,384 Class B netids and 2^{21} =2,097,152 Class C netids. 2^{16} -2=65,534 Class B hostids, and 2^{8} -2=254 Class C hostids. So, x_B =1,073,709,056, and x_C =532,676,608
- So, $x=x_A+x_B+x_C=3,737,091,842$

Inclusion-exclusion principle

- Suppose that a task can be done in n₁ or in n₂ ways, but some of the set of n₁ ways to do the task are the same as some of the n₂ ways to do the task
- Cannot simply add n₁ and n₂, but need to subtract the number of ways to the task that is common in both sets
- This technique is called principle of inclusionexclusion or subtraction principle

- How many bit strings of length 8 either start with a 1 or end with two bits 00?
- 1 _ _ _ : 2⁷=128 ways
- _ _ _ _ 00: 2⁶=64 ways
- Total number of possible bit strings is 128+64-32=160

Inclusion-exclusion principle

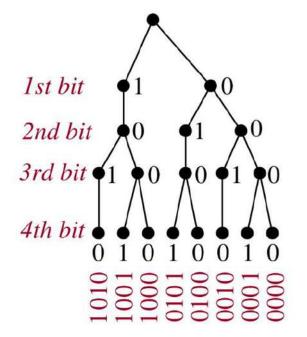
Using sets to explain

$$|A_1 \cup A_2| = |A_1| + |A_2| - |A_1 \cap A_2|$$

Tree diagrams

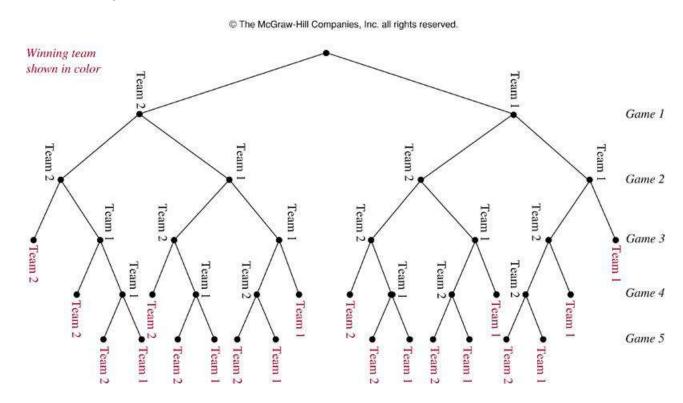
- How many bit strings of length 4 do not have two consecutive 1s?
- In some cases, we can use tree diagrams for counting

© The McGraw-Hill Companies, Inc. all rights reserved.



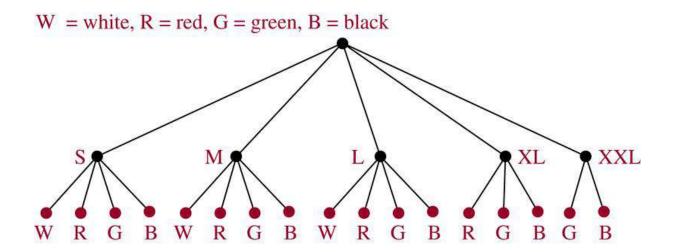
8 without two consecutive 1s

 A playoff between 2 teams consists of at most 5 games. The 1st team that wins 3 games wins the playoff. How many different ways are there?



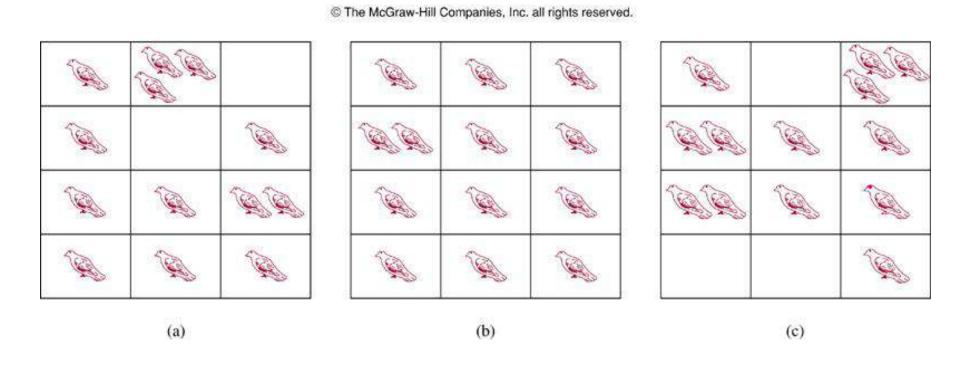
Suppose a T-shirt comes in 5 different sizes: S, M, L, XL, and XXL. Further suppose that each size comes in 4 colors, white, green, red, and black except for XL which comes only in red, green and black, and XXL which comes only in green and black. How many possible size and color of the T-shirt?

© The McGraw-Hill Companies, Inc. all rights reserved.



6.2 Pigeonhole principle

- Suppose that a flock of 20 pigeons flies into a set of 19 pigeonholes to roost
- Thus, at least 1 of these 19 pigeonholes must have at least 2 pigeons
- Why? If each pigeonhole had at most one pigeon in it, at most 19 pigeons, 1 per hole, could be accommodated
- If there are more pigeons than pigeonholes, then there must be at least 1 pigeonhole with at least 2 pigeons in it



13 pigeons and 12 pigeonholes

Pigeonhole principle

- Theorem 1: If k is a positive integer and k+1 or more objects are placed into k boxes, then there is at least one box containing two or more of the objects
- Proof: suppose that none of the k boxes contains more than one object. Then the total number of objects would be at most k. This is a contradiction as there are at least k+1 objects
- Also known as Dirichlet drawer principle

Pigeonhole principle

- Corollary 1: A function f from a set with k+1 or more elements to a set with k elements is not one-to-one
- Proof: Suppose that for each element y in the codomain of f we have a box that contains all elements x of the domain f s.t. f(x)=y
- As the domain contains k+1 or more elements and the codomain contain only k elements, the pigeonhole principle tells us that one of these boxes contains 2 or more elements x of the domain
- This means that f cannot be one-to-one

- Among any group of 367 people, there must be at least 2 with the same birthday
- How many students must be in a class to guarantee that at least 2 students receive the same score on the final exam, if the exam is graded on a scale from 0 to 100 points

Generalized pigeonhole principle

- Theorem 2: If N objects are placed into k boxes, then there is at least one box containing at least \(\Gamma N/k\T\) objects
- Proof: Proof by contradiction. Suppose that none of the boxes contains more than $\lceil N/k \rceil$ -1 objects. Then the total number of objects is at most $k(\lceil N/k \rceil -1) < k((N/k+1)-1) = N$ where the inequality $\lceil N/k \rceil < N/k+1$ is used
- This is a contradiction as there are a total of N objects

Generalized pigeonhole principle

- A common type of problem asks for the minimum number of objects s.t. at least r of these objects must be in one of k boxes when these objects are distributed among boxes
- When we have N objects, the generalized pigeonhole principle tells us there must be at least r objects in one of the boxes as long as \[\text{N/k} \] ≥ r. Recall \[\text{N/k+1> \[\text{N/k} \] . The smallest integer N with \[\text{N/k>r-1, i.e., N=k(r-1)+1} is the smallest integer satisfying the inequality \[\text{N/k} \] ≥ r

- Among 100 people there are at least $\lceil 100/12 \rceil = 9$ who were born in the same month
- What is the minimum number of students required in a discrete mathematics class to be sure that at least 6 will receive the same grade, if there are 5 possible grades,?
- The minimum number of studeA, B, C, D, and Fnts needed to ensure at least 6 students receive the same grade is the smallest integer N s.t.
 - $\lceil N/5 \rceil = 6$. Thus, the smallest N=5.5+1=26

- How many cards must be selected from a standard deck of 52 cards to guarantee that a least 3 cards of the same suit are chosen?
- Suppose there are 4 boxes, one for each suit. If N cards are selected, using the generalized pigeonhole principle, there is at lest one box containing at least \[\frac{N}{4} \] cards
- Thus to have $\lceil N/4 \rceil \ge 3$, the smallest N is $2\cdot 4+1=9$. So at least 9 cards need to be selected

- How many cards must be selected to guarantee that at least 3 hearts are selected?
- We do not use the generalized pigeonhole principle to answer this as we want to make sure that there are 3 hearts, not just 3 cards of one suit
- Note in the worst case, we can select all the clubs, diamonds, and spades, 39 cards in all before selecting a single heart
- The next 3 cards will be all hearts, so we may need to select 42 cars to guarantee 3 hearts are selected

Applications of Pigeonhole principle

- During a month with 30 days, a baseball team plays at least one game a day, but no more than 45 games. Show that there must be a period of some number of consecutive days during which the team must play exactly 14 games
- Let a_j be the number of games played on or before jth day of the month. Then a_1 , a_2 , ..., a_{30} is an increasing sequence of distinctive positive integers with $1 \le a_j \le 45$. Moreover $a_1 + 14$, $a_2 + 14$, ..., $a_{30} + 14$ is also an increasing sequence of distinct positive integers with $15 \le a_j + 14 \le 59$
- The 60 positive integers, a_1 , a_2 , ..., a_{30} , a_1+14 , a_2+14 , ..., $a_{30}+14$ are all less than or equal to 59. Hence, by the pigeonhole principle, two of these integers must be equal, i.e., there must be some I and j with $a_i=a_j+14$. This means exactly 14 games were played from day j+1 to day i

Ramsey theory

- Example: Assume that in a group of 6 people, each pair of individuals consists of two friends or 2 enemies. Show that there are either 3 mutual friends or 3 mutual enemies in the group
- Let A be one of the 6 people. Of the 5 other people in the group, there are either 3 or more who are friends of A, or 3 or more are enemies of A
- This follows from the generalized pigeonholes principles, as 5 objects are divided into two sets, one of the sets has at least $\lceil 5/2 \rceil = 3$ elements

Ramsey number

- Ramsey number R(m, n) where m and n are positive integers greater than or equal to 2, denotes the minimum number of people at a party s.t. there are either m mutual friends or n mutual enemies, assuming that every pair of people at the party are friends or enemies
- In the previous example, R(3,3)≤6
- We conclude that R(3,3)=6 as in a group of 5 people where every two people are friends or enemies, there may not be 3 mutual friends or 3 mutual enemies

6.3 Permutations & Combinations

Counting:

- Find out the number of ways to select a particular number of elements from a set
- Sometimes the order of these elements matter

• Example:

- How many ways we can select 3 students from a group of 5 students?
- How many different ways they stand in line for picture?

- How many ways can we select 3 students from a group of 5 to stand in lines for a picture?
- First note that the order in which we select students matters
- There are 5 ways to select the 1st student
- Once the 1st student is selected, there are 4 ways to select the 2nd student in line. By product rule, there are 5x4x3=60 ways to select 3 student from a group of 5 students to stand line for picture

- How many ways can we arrange all 5 in a line for a picture?
- By product rule, we have 5x4x3x2x1=120 ways to arrange all 5 students in a line for a picture

- A permutation of a set of distinct objects is an ordered arrangement of these objects
- An ordered arrangement of r elements of a set is called an r-permutation
- The number of r-permutation of a set with n element is denoted by P(n,r). We can find P(n,r) using the product rule
- Example: Let S={1, 2, 3}. The ordered arrangement 3, 1, 2 is a permutation of S. The ordered arrangement 3, 2, is a 2-permutation of S

- Let S={a, b, c}. The 2-permutation of S are the ordered arrangements, a, b; a, c; b, a; b, c; c, a; and c, b
- Consequently, there are 6 2-permutation of this set with 3 elements
- Note that there are 3 ways to choose the 1st element and then 2 ways to choose the 2nd element
- By product rule, there are $P(3,2)=3 \times 2 = 6$

r-permutation

 Theorem 1: If n is a positive and r is an integer with 1≤r≤n, then there are

$$P(n,r)=n(n-1)(n-2)...(n-r+1)$$

- r-permutations of a set with n elements
- Proof: Use the product rule, the first element can be chosen in n ways. There are n-1 ways to chose the 2nd element. Likewise, there are n-2 ways to choose 3rd element, and so on until there are exactly n-(r-1)=n-r+1 ways to choose the r-th element. Thus, there are n·(n-1)·(n-2)...·(n-r+1) r-permutations of the set

r-permutation

- Note that p(n,0)=1 whenever n is a nonnegative integer as there is exactly one way to order zero element
- Corollary 1: If n and r are integers with $0 \le r \le n$, then P(n,r)=n!/(n-r)!
- Proof: When n and r are integers with 1≤r≤n, by
 Theorem 1 we have
 - P(n,r)=n(n-1)...(n-r+1)=n!/(n-r)!
- As n!/(n-0)!=1 when n is a nonnegative integer, we have P(n,r)=n!/(n-r)! also holds when r=0

r-permutation

- By Theorem 1, we know that if n is a positive integer, then P(n,n)=n!
- Example: How many ways are there to select a 1st prize winner, a 2nd prize winner, and a 3rd prize winner from 100 different contestants?
- P(100,3)=100x99x98=970,200

- How many permutations of the letters ABCDEFGH contain string ABC?
- As ABC must occur as a block, we can find the answer by finding the permutations of 6 letters, the block ABC and the individual letters, D,E,F,G, and H. As these 6 objects must occur in any order, there are 6!=720 permutations of the letters ABCDEFGH in which ABC occurs in a block

Combinations

- How many different committees of 3 students can be formed from a group of 4 students?
- We need to find the number of subsets with 3 elements from the set containing 4 students
- We see that there are 4 such subsets, one for each of the 4 students as choosing 4 students is the same as choosing one of the 4 students to leave out of the group
- This means there are 4 ways to choose 3 students for the committee, where th order in which these students are chosen does not matter

- An r-combination of elements of a set is an unordered selection of r elements from the set
- An r-combination is simply a subset of the set with r elements
- Denote by C(n,r). Note that C(n,r) is also denoted by $\binom{n}{r}$ and is called a binomial coefficient

- Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a
 3-combination from S
- We see that C(4,2)=6, as the 2-combination of {a, b, c, d} are 6 subsets {a, b}, {a, c}, {a, d}, {b, c}, {b, d}, and {c, d}

- We can determine the number of rcombinations of a set with n elements using the formula for the number of r-permutations of a set
- Note that the r-permutations of a set can be obtained by first forming r-combinations and then ordering the elements in these combinations

 The number of r-combinations of a set with n elements, where n is a nonnegative integer and r is an integer with 0≤r≤n equals

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

 Proof: The r-permutations of the set can be obtained by forming the C(n,r) r-combinations and then ordering the elements in each r-permutation which can be done in P(r,r) ways

$$P(n,r) = C(n,r) \cdot P(r,r)$$

$$C(n,r) = \frac{P(n,r)}{P(r,r)} = \frac{n!/(n-r)!}{r!/(r-r)!} = \frac{n!}{r!(n-r)!}$$

When computing r-combination

$$C(n,r) = \frac{n!}{r!(n-r)!} = \frac{P(n,r)}{r!} = \frac{n(n-1)\cdots(n-r+1)}{r!}$$

thus canceling out all the terms in the larger factorial

- How many poker hands of 5 cards can be dealt from a standard deck of 52 cards? Also, how many ways are there to select 47 cards from a standard deck of 52 cards?
- Choose 5 out of 52 cards: C(52,5)=52!/(5!47!)=
 (52x51x50x49x48)/(5x4x3x2x1)=26x17x10x49
 x12=2,598,960
- C(52,47)=52!/(47!5!)=2,5,98,960

- Let n and r be nonnegative integers with $r \le n$. Then C(n,r)=C(n,n-r)
- Proof:

$$C(n,r) = \frac{n!}{r!(n-r)!}$$

$$C(n,n-r) = \frac{n!}{(n-r)!(n-(n-r))!} = \frac{n!}{(n-r)!r!}$$

Combinatorial proof

- A combinatorial proof of an identity is a proof that uses counting arguments to prove that both sides of the identity count the same objects but in different ways
- Proof of Corollary 2: Suppose that S is a set with n elements. Every subset A of S with r elements corresponds to a subset of S with n-r elements, i.e., \overline{A} . Thus, C(n,r)=C(n,n-r)

- How many ways are there to select 5 players from a 10-member tennis team?
- Choose 5 out of 10 elements, i.e., C(10, 5)=10!/(5!5!)=252
- How many bit strings of length n contain exactly r 1s?
- This is equivalent to choose r elements from n elements, i.e., C(n,r)

6.4 Binomial coefficients

- The number of r-combinations form a set with n elements is often denoted by $\binom{n}{r}$
- Also called as a binomial coefficient as these numbers occur as coefficients in the expansion of powers of binomial expressions such as (a+b)ⁿ
- A binomial expression is simply the sum of two terms, such as x+y

- The expansion of (x+y)³ can be found using combinational reasoning instead of multiplying the there terms out
- When (x+y)³=(x+y)(x+y)(x+y) is expanded, all products of a term in the 1st sum, a term in the 2nd sum, and a term in the 3rd sum are added, e.g., x³, x²y, xy², and y³
- To obtain a term of the form x³, an x must be chosen in each of the sums, and this can be done in only one way. Thus, the x³ term in the product has a coefficient of 1

- To obtain a term of the form x^2y , an x must be chosen in 2 of the 3 sums (and consequently a y in the other sum). Hence, the number of such terms is the number of 2-combinations of 3 objects, namely, $\binom{3}{2}$
- Similarly, the number of terms of the form xy^2 is the number of ways to pick 1 of the 3 sums to obtain an x (and consequently take a y from each of the other two sums), which can be done in $\binom{3}{1}$ ways

Consequently,

$$(x+y)^{3} = (x+y)(x+y)(x+y) = (xx+xy+yx+yy)(x+y)$$
$$= xxx + xxy + xyx + xyy + yxx + yxy + yyx + yyy$$
$$= x^{3} + 3x^{2}y + 3xy^{2} + y^{3}$$

 The binomial theorem: Let x and y be variables, and let n be a nonnegative integer

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$$

Binomial theorem

$$(x+y)^{n} = \sum_{j=0}^{n} \binom{n}{j} x^{n-j} y^{j}$$

$$= \binom{n}{0} x^{n} + \binom{n}{1} x^{n-1} y + \binom{n}{2} x^{n-2} y^{2} + \dots + \binom{n}{n-1} x y^{n-1} + \binom{n}{n} y^{n}$$

- Proof: A combinatorial proof of the theorem is given. The terms in the product when it is expanded are of the form $x^{n-j}y^j$ for j=0,1,2..., n
- To count the number of terms of the form $x^{n-j}y^j$, note that to obtain such a term it is necessary to choose n-j x's from the n sums (so that the other j terms in the product are y's). Therefore, the coefficients of $x^{n-j}y^j$ is $\binom{n}{n-j}$ which is equal to $\binom{n}{j}$

$$(x+y)^4 = \sum_{j=0}^4 {4 \choose j} x^{4-j} y^j$$

$$= {4 \choose 0} x^4 + {4 \choose 1} x^3 y + {4 \choose 2} x^2 y^2 + {4 \choose 3} x y^3 + {4 \choose 4} y^4$$

• What is the coefficient of $x^{12}y^{13}$ in the expansion of $(x+y)^{25}$?

$$\binom{25}{13} = \frac{25!}{13!12!} = 5,200,300$$

• What is the coefficient of $x^{12}y^{13}$ in the expansion of $(2x-3y)^{25}$?

$$(2x-3y)^{25} = \sum_{j=0}^{25} {25 \choose j} (2x)^{25-j} (-3y)^j$$

• Consequently, the coefficient of $x^{12}y^{13}$ is

$$\binom{25}{13} 2^{12} (-3)^{13} = -\frac{25!}{13! 12!} 2^{12} 3^{13}$$

Corollary 1: Let n be a nonnegative integer.
 Then

$$\sum_{k=0}^{n} \binom{n}{k} = 2^{n}$$

Proof: Using Binomial theorem with x=1 and y=1

$$2^{n} = (1+1)^{n} = \sum_{k=0}^{n} {n \choose k} 1^{k} 1^{n-k} = \sum_{k=0}^{n} {n \choose k}$$

- There is also a combinatorial proof of Corollary 1
- Proof: A set with n elements has a total of 2^n different subsets. Each subset has 0 elements, 1 element, 2 elements, or n elements in it. Thus, there are $\binom{n}{0}$ subsets with 0 elements, $\binom{n}{1}$ subsets with 1 element, ... and $\binom{n}{n}$ subsets with n elements. Thus $\sum_{k=0}^{n} \binom{n}{k}$ counts the total number of subsets of a set with n elements,
- This shows that $\sum_{k=0}^{n} {n \choose k} = 2^n$

Let *n* be a positive integer. Then

$$\sum_{k=0}^{n} (-1)^k \binom{n}{k} = 0$$

Proof:
$$0 = 0^n = ((-1) + 1)^n = \sum_{k=0}^n \binom{n}{k} (-1)^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k} (-1)^k$$

$$\binom{n}{0} + \binom{n}{2} + \binom{n}{4} + \dots = \binom{n}{1} + \binom{n}{3} + \binom{n}{5} + \dots$$

Let *n* be a non - negative interger. Then

$$\sum_{k=0}^{n} 2^{k} \binom{n}{k} = 3^{n}$$

Proof:
$$(2+1)^n = \sum_{k=0}^n \binom{n}{k} 2^k 1^{n-k} = \sum_{k=0}^n \binom{n}{k} 2^k$$

Pascal identity and triangle

Pascal's identity: Let n and k be positive integers with $n \ge k$.

Then
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

- Combinatorial proof: Let T be a set containing n+1 elements. Let a be an element in T, and let $S=T-\{a\}$ (S has n elements)
- Note that there are $\binom{n+1}{k}$ subsets of T containing k elements. However, a subset of T with k elements either contains a (i.e., a subset of k-1 elements of S) or not.
- There are $\binom{n}{k-1}$ subsets of k-1 elements of S, and so there are $\binom{n}{k-1}$ subsets of k-1 elements containing a
- There are $\binom{n}{k}$ subsets of k elements of T that do not contain a• Thus $\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$

• Thus
$$\binom{n+1}{k} = \binom{n}{k-1} + \binom{n}{k}$$

Pascal identity and triangle

• Can also prove the Pascal identity with algebraic manipulation of $\binom{n}{k}$

$$\binom{n+1}{k} = \frac{(n+1)!}{k!(n-k+1)!}$$

$$\binom{n}{k-1} = \frac{n!}{(k-1)!(n-k+1)!} = \frac{kn!}{(k-1)!k(n-k+1)!} = \frac{kn!}{k!(n-k+1)!}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!} = \frac{(n-k+1)n!}{k!(n-k)!(n-k+1)} = \frac{(n-k+1)n!}{k!(n-k+1)!}$$

$$\binom{n}{k} + \binom{n}{k} = \frac{kn!}{k!(n-k+1)!} + \frac{(n-k+1)n!}{k!(n-k+1)!} = \frac{(k+n-k+1)n!}{k!(n-k+1)!} = \frac{(n+1)n!}{k!(n-k+1)!} = \frac{(n+1)n!}{k!(n-k+1)!}$$

Pascal's triangle

 Pascal's identity is the basis for a geometric arrangement of the binomial coefficients in a triangle

© The McGraw-Hill Companies, Inc. all rights reserved.

$$\begin{pmatrix} 0 \\ 0 \end{pmatrix}$$
 1 each n - th row, binomial coefficients
$$\begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$
 1 1 $\begin{pmatrix} n+1 \\ k \end{pmatrix} = \begin{pmatrix} n \\ k-1 \end{pmatrix} + \begin{pmatrix} n \\ k \end{pmatrix}$
$$\begin{pmatrix} 2 \\ 0 \end{pmatrix} \begin{pmatrix} 2 \\ 1 \end{pmatrix} \begin{pmatrix} 2 \\ 2 \end{pmatrix}$$
 By Pascal's identity: 1 2 1
$$\begin{pmatrix} 3 \\ 0 \end{pmatrix} \begin{pmatrix} 3 \\ 1 \end{pmatrix} \begin{pmatrix} 3 \\ 2 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 3 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} + \begin{pmatrix} 6 \\ 5 \end{pmatrix} = \begin{pmatrix} 7 \\ 5 \end{pmatrix}$$
 1 3 3 1
$$\begin{pmatrix} 4 \\ 0 \end{pmatrix} \begin{pmatrix} 4 \\ 1 \end{pmatrix} \begin{pmatrix} 4 \\ 2 \end{pmatrix} \begin{pmatrix} 4 \\ 3 \end{pmatrix} \begin{pmatrix} 4 \\ 4 \end{pmatrix} \begin{pmatrix} n+1 \\ k \end{pmatrix} = \begin{pmatrix} n \\ k-1 \end{pmatrix} + \begin{pmatrix} n \\ k \end{pmatrix}$$
 1 4 6 4 1
$$\begin{pmatrix} 5 \\ 0 \end{pmatrix} \begin{pmatrix} 5 \\ 1 \end{pmatrix} \begin{pmatrix} 5 \\ 2 \end{pmatrix} \begin{pmatrix} 5 \\ 3 \end{pmatrix} \begin{pmatrix} 5 \\ 4 \end{pmatrix} \begin{pmatrix} 5 \\ 5 \end{pmatrix}$$
 1 5 10 10 5 1
$$\begin{pmatrix} 6 \\ 0 \end{pmatrix} \begin{pmatrix} 6 \\ 1 \end{pmatrix} \begin{pmatrix} 6 \\ 2 \end{pmatrix} \begin{pmatrix} 6 \\ 3 \end{pmatrix} \begin{pmatrix} 6 \\ 4 \end{pmatrix} \begin{pmatrix} 6 \\ 5 \end{pmatrix} \begin{pmatrix} 6 \\ 6 \end{pmatrix} \end{pmatrix}$$
 1 6 15 20 15 6 1
$$\begin{pmatrix} 7 \\ 0 \end{pmatrix} \begin{pmatrix} 7 \\ 1 \end{pmatrix} \begin{pmatrix} 7 \\ 2 \end{pmatrix} \begin{pmatrix} 7 \\ 3 \end{pmatrix} \begin{pmatrix} 7 \\ 4 \end{pmatrix} \begin{pmatrix} 7 \\ 5 \end{pmatrix} \begin{pmatrix} 7 \\ 6 \end{pmatrix} \begin{pmatrix} 7 \\ 7 \end{pmatrix} \end{pmatrix}$$
 1 7 21 35 35 21 7 1
$$\begin{pmatrix} 8 \\ 0 \end{pmatrix} \begin{pmatrix} 8 \\ 1 \end{pmatrix} \begin{pmatrix} 8 \\ 2 \end{pmatrix} \begin{pmatrix} 8 \\ 3 \end{pmatrix} \begin{pmatrix} 8 \\ 4 \end{pmatrix} \begin{pmatrix} 8 \\ 5 \end{pmatrix} \begin{pmatrix} 8 \\ 6 \end{pmatrix} \begin{pmatrix} 8 \\ 7 \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix} \end{pmatrix} \begin{pmatrix} 8 \\ 8 \end{pmatrix}$$

(a)