6.1 Basics of counting

 Combinatorics: they study of arrangements of
objects

 Enumeration: the counting of objects with
certain properties (an important part of
combinatorics)

— Enumerate the different telephone numbers
possible in US

— The allowable password on a computer

— The different orders in which runners in a race can
reach



Example

Suppose a password on a system consists of 6,
7, or 8 characters

Each of these characters must be a digit or a
letter of the alphabet

Each password must contain at least one digit
How many passwords are there?



Basic counting principles

* Two basic counting principles
— Product rule

— Sum rule

* Product rule: suppose that a procedure can be
broken down into a sequence of two tasks

* |f there are n; ways to do the 15 task, and
each of these there are n, ways to do the 2"
task, then there are n;-n, ways to do the
procedure



Example

* The chairs of a room to be labeled with a
letter and a positive integer not exceeding
100. What is the largest number of chairs that
can be labeled differently?

* There are 26 letters to assign for the 15 part
and 100 possible integers to assign for the 2"
part, so there are 26:100=2600 different

ways to label chairs



Product rule

e Suppose that a procedure is carried out by
performing the tasks T,, T,, ..., T, in sequence.
If each task T,, i=1, 2, ..., n can be done in n,
ways, regardless of how the previous tasks
were done, then there are n;'n,* ..-n_ ways to
carry out the procedure



Example

* How many different license plates are
available if each plate contains a sequence of
3 letters followed by 3 digits (and non
sequences of letters are prohibited, even if
they are obscene)?

* License plate : There are 26

choices for ea_ch_lgttgr_a—nd 10 choices for each
digit. So, there are 26:26:26-10:10-10 =

17,576,000 possible license plates



Counting functions

* How many functions are there from a set with
m elements to a set with n elements?

e A function corresponds to one of the n
elements in the codomain for each of the m
elements in the domain

 Hence, by product rule there are n'n....n=n™"
functions from a set with m elements to one
with n elements



Counting one-to-one functions

* How many one-to-one functions are there from a set with m
elements to one with n elements?

e First note that when m>n there are no one-to-one functions
from a set with m elements to one with n elements

* Let m<n. Suppose the elements in the domain are a,, a,, ...,
a... There are n ways to choose the value for the value at a,

* As the function is one-to-one, the value of the function at a,
can be picked in n-1 ways (the value used for a, cannot be
used again)

e Using the product rule, there are n(n-1)(n-2)...(n-m+1) one-to-
one functions from a set with m elements to one with n
elements



Example

* From a set with 3 elements to one with 5
elements, there are 5-4-:3=60 one-to-one
functions



Example

* The format of telephone numbers in north
America is specified by a numbering plan

|t consists of 10 digits, with 3-digit area code,
3-digit office code and 4-digit station code

* Each digit can take one form of
-X:0,1,..9
—-N:2,3,..9
-Y:0,1

10



Example

In the old plan, the formats for area code, office
code, and station code are NYX, NNX, and XXXX,

respectively

So the phone numbers had NYX-NNX-XXXX
NYX: 8:2-:10=160 area codes

NNX: 8-8-10=640 office codes
XXXX:10-10-10-10=10,000 station codes

So, there are 160:640-10,000 = 1,024,000,000
phone numbers
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Example

* |In the new plan, the formats for area code, office
code, and station code are NXX, NXX, and XXXX,
respectively

* So the phone numbers had NXX-NXX-XXXX
e NXX:8:10-10=800 area codes

« NXX:8:10-10=800 office codes

e XXXX:10-10:10-10=10,000 station codes

* So, there are 800-800-10,000 = 6,400,000,000
phone numbers
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Product rule

* IfA,, A, ..., A are finite sets, then the
number of elements in the Cartesian product
of these sets is the product of the number of

elements in each set
* AL XAy x XA |=[Aq] x[Ay] x L x]A]
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Sum rule

* If a task can be done either in one of n, ways or in
one of n, ways, where none of the set of n, ways is
the same as any of the set of n, ways, then there are
n,+n, ways to do the task

 Example: suppose either a member of faculty or a
student in CSE is chosen as a representative to a
university committee. How many different choices
are there for this representative if there are 8
members in faculty and 200 students?

* There are 8+200=208 ways to pick this representative
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Sum rule

* If A, A, ..., A are disjoint finite sets, then the
number of elements in the union of these sets
is as follows

IA,UA, U... UA_|=|A,|+|A,|+..+|A_|
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More complex counting problems

* In aversion of the BASIC programming language, the name of
a variable is a string of 1 or 2 alphanumeric characters, where
uppercase and lowercase letters are not distinguished.

* Moreover, a variable name must begin with a letter and must
be different from the five strings of two characters that are
reserved for programming use

* How many different variables names are there?

* LetV, be the number of these variables of 1 character, and
likewise V, for variables of 2 characters

* So, V,=26, and V,=26-36-5=931
 In total, there are 26+931=957 different variables
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Example

* Each user on a computer system has a password, which is 6 to
8 characters long, where each character is an uppercase letter
or a digit. Each password must contain at least one digit. How
many possible passwords are there?

* Let P be the number of all possible passwords and P=P_+P.+P,
where P, is a password of i characters

* P,=365-265=1,867,866,560

« P.,=367-267=70,332,353,920

« P,=368-268=208,827,064,576
* P=P_+P,+P,=2,684,483,063,360
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Example: Internet address

© The McGraw-Hill Companies, Inc. all rights reserved.

Bit Number 0 1 2 3 4 8 16 24 31
Class A 0 netid hostid

Class B I 0 netid hostid

Class C 1 1 0 netid hostid

Class D | 1 1 0 Multicast Address

Class E 1 1 1 1 0 Address

* Internet protocol (IPv4)
— Class A: largest network

— Class B: medium-sized networks

— Class C : smallest networks

— Class D: multicast (not assigned for IP address)

— Class E: future use

— Some are reserved: netid 1111111, hostid all 1’s and 0’s

* Neither class D or E addresses are assigned as the IPv4 addresses

 How may different IPv4 addresses are available?
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Example: Internet address

© The McGraw-Hill Companies, Inc. all rights reserved.

Bit Number 0 1 2 3 4 8 16 24 31
Class A 0 netid hostid

Class B I 0 netid hostid

Class C 1 1 0 netid hostid

Class D I 1 1 0 Multicast Address

Class E 1 1 1 1 0 Address

Let the total number of address be x, and x=x,+xg+X
Class A: there are 27-1=127 netids (1111111 is reserved). For each netid,

there are 2%4-2=16,777,214 hostids (as hostids of all Os and 1s are
reserved), so there are x,=127-16,777,214=2,130,706,178 addresses

Class B, C: 214=16,384 Class B netids and 221=2,097,152 Class C netids.

216.2=65,534 Class B hostids, and 28-2=254 Class C hostids. So,
xg=1,073,709,056, and x-=532,676,608

S0, x=X,+Xp+x.=3,737,091,842




Inclusion-exclusion principle

* Suppose that a task can be done in n, orin n,
ways, but some of the set of n, ways to do the
task are the same as some of the n, ways to
do the task

* Cannot simply add n, and n,, but need to
subtract the number of ways to the task that is
common in both sets

e This technique is called principle of inclusion-
exclusion or subtraction principle
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Example

* How many bit strings of length 8 either start
with a 1 or end with two bits 00?

1 . 27=128 ways
« 00: 2°=64 ways
¢ 1] 00: 2°=32 ways

* Total number of possible bit strings is 128+64-
32=160
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Inclusion-exclusion principle

e Using sets to explain
| A UA, |= A +]Ay]-|ALNA,)
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Tree diagrams

 How many bit strings of length 4 do not have two consecutive
1s?

* In some cases, we can use tree diagrams for counting

© The McGraw-Hill Companies, Inc. all rights reserved.

8 without two consecutive 1s

4th bit
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Example

* A playoff between 2 teams consists of at most 5 games. The
15t team that wins 3 games wins the playoff. How many

different ways are there?

® The McGraw-Hill Companies, Inc. all rights reserved.
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Example

e Suppose a T-shirt comes in 5 different sizes: S, M, L, XL, and
XXL. Further suppose that each size comes in 4 colors, white,
green, red, and black except for XL which comes only in red,
green and black, and XXL which comes only in green and
black. How many possible size and color of the T-shirt?

© The McGraw-Hill Companies, Inc. all rights reserved.

W = white, R =red, G = green, B = black

S M L XL XXL

W R G BWRGIBWIRGBIRG BG B
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6.2 Pigeonhole principle

e Suppose that a flock of 20 pigeons flies into a set of
19 pigeonholes to roost

* Thus, at least 1 of these 19 pigeonholes must have at
least 2 pigeons

 Why? If each pigeonhole had at most one pigeon in
it, at most 19 pigeons, 1 per hole, could be
accommodated

* If there are more pigeons than pigeonholes, then
there must be at least 1 pigeonhole with at least 2
pigeons in it
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Example

@ The McGraw-Hill Companies, Inc. all rights reserved.
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Pigeonhole principle

* Theorem 1: If kis a positive integer and k+1 or more
objects are placed into k boxes, then there is at least
one box containing two or more of the objects

* Proof: suppose that none of the k boxes contains
more than one object. Then the total number of
objects would be at most k. This is a contradiction as
there are at least k+1 objects

* Also known as Dirichlet drawer principle

28



Pigeonhole principle

e Corollary 1: A function f from a set with k+1 or more
elements to a set with k elements is not one-to-one

* Proof: Suppose that for each element y in the
codomain of f we have a box that contains all
elements x of the domain f s.t. f(x)=y

 As the domain contains k+1 or more elements and
the codomain contain only k elements, the
pigeonhole principle tells us that one of these boxes
contains 2 or more elements x of the domain

e This means that f cannot be one-to-one
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Example

e Among any group of 367 people, there must
be at least 2 with the same birthday

* How many students must be in a class to
guarantee that at least 2 students receive the
same score on the final exam, if the exam is
graded on a scale from 0 to 100 points

30



Generalized pigeonhole principle

* Theorem 2: If N objects are placed into k boxes, then
there is at least one box containing at

least [ N/Kk | objects

* Proof: Proof by contradiction. Suppose that none
of the boxes contains more than [ N/k 1 -1 objects.
Then the total number of objects is at most

k( TN/K] -1)<k((N/k+1)-1)=N
where the inequality [ N/k | <N/k+1 is used

 This is a contradiction as there are a total of N
objects
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Generalized pigeonhole principle

* A common type of problem asks for the minimum
number of objects s.t. at least r of these objects must
be in one of k boxes when these objects are

distributed among boxes

principle tells us there must
one of the boxes as long as

When we have N objects, the generalized pigeonhole

oe at least r objects in
'N/k | >r. Recall

N/k+1> [ N/k|.The small

lest integer N with

N/k>r-1, i.e., N=Kk(r-1)+1 is the smallest integer
satisfying the inequality [ N/K]>r
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Example

 Among 100 people there are at least [ 100/12 1 =9
who were born in the same month

 Whatis the minimum number of students
required in a discrete mathematics class to be sure
that at least 6 will receive the same grade, if there
are 5 possible grades,?

e The minimum number of studeA, B, C, D, and Fnts
needed to ensure at least 6 students receive the

same grade is the smallest integer N s.t.
[ N/5 | =6. Thus, the smallest N=5-54+1=26
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Example

 How many cards must be selected from a standard
deck of 52 cards to guarantee that a least 3 cards of
the same suit are chosen?

e Suppose there are 4 boxes, one for each suit. If N
cards are selected, using the generalized pigeonhole
principle, there is at lest one box containing at least

[[N/4'] cards

 Thustohave | N/4 | = 3, the smallest N is
2:44+1=9. So at least 9 cards need to be selected

34



Example

e How many cards must be selected to guarantee that
at least 3 hearts are selected?

 We do not use the generalized pigeonhole principle
to answer this as we want to make sure that there
are 3 hearts, not just 3 cards of one suit

 Note in the worst case, we can select all the clubs,
diamonds, and spades, 39 cards in all before
selecting a single heart

* The next 3 cards will be all hearts, so we may need to
select 42 cars to guarantee 3 hearts are selected
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Applications of Pigeonhole
principle

During a month with 30 days, a baseball team plays at least one game a
day, but no more than 45 games. Show that there must be a period of
some number of consecutive days during which the team must play
exactly 14 games

Let a; be the number of games played on or before jth day of the month.
Then a,, a,, ..., a5, is an increasing sequence of distinctive positive integers
with 1<a, <45. Moreover a,+14, a,+14, ..., a;;+14 is also an increasing
sequence of distinct positive integers with 15 <a+14 <59

The 60 positive integers, a,, a,, ..., a3y, 3;+14, a,+14, ..., a5,+14 are all less
than or equal to 59. Hence, by the pigeonhole principle, two of these
integers must be equal, i.e., there must be some | and j with a;=a+14. This
means exactly 14 games were played from day j+1 to day i
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Ramsey theory

 Example: Assume that in a group of 6 people, each
pair of individuals consists of two friends or 2
enemies. Show that there are either 3 mutual friends
or 3 mutual enemies in the group

* Let A be one of the 6 people. Of the 5 other people
in the group, there are either 3 or more who are
friends of A, or 3 or more are enemies of A

* This follows from the generalized pigeonholes
principles, as 5 objects are divided into two sets, one
of the sets has at least [ 5/2 | =3 elements
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Ramsey number

 Ramsey number R(m, n) where m and n are positive
integers greater than or equal to 2, denotes the
minimum number of people at a party s.t. there are
either m mutual friends or n mutual enemies,
assuming that every pair of people at the party are
friends or enemies

* In the previous example, R(3,3)<6

 We conclude that R(3,3)=6 as in a group of 5 people
where every two people are friends or enemies,
there may not be 3 mutual friends or 3 mutual
enemies
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6.3 Permutations & Combinations

* Counting:

— Find out the number of ways to select a particular
number of elements from a set

— Sometimes the order of these elements matter

 Example:

— How many ways we can select 3 students from a
group of 5 students?

— How many different ways they stand in line for
picture?

39



Permutation

e How many ways can we select 3 students from a
group of 5 to stand in lines for a picture?

* First note that the order in which we select students
matters

 There are 5 ways to select the 15 student

* Once the 15t student is selected, there are 4 ways to
select the 29 student in line. By product rule, there
are 5x4x3=60 ways to select 3 student from a group
of 5 students to stand line for picture

40



Permutation

e How many ways can we arrange all 5in a line
for a picture?

* By product rule, we have 5x4x3x2x1=120 ways
to arrange all 5 students in a line for a picture

41



Permutation

* A permutation of a set of distinct objects is an
ordered arrangement of these objects

 An ordered arrangement of r elements of a set is
called an r-permutation

* The number of r-permutation of a set with n element
is denoted by P(n,r). We can find P(n,r) using the
product rule

 Example: Let S={1, 2, 3}. The ordered arrangement 3,
1, 2 is a permutation of S. The ordered arrangement
3, 2, is a 2-permutation of S

42



Permutation

e Let S={a, b, c}. The 2-permutation of S are the
ordered arrangements, a, b; a,c; b, a; b, c; c,
a;andc, b

* Consequently, there are 6 2-permutation of
this set with 3 elements

* Note that there are 3 ways to choose the 15
element and then 2 ways to choose the 2"d
element

* By product rule, there are P(3,2)=3x2=6
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r-permutation

e Theorem 1: If nis a positive and r is an integer with
1<r<n, then there are

P(n,r)=n(n-1)(n-2)...(n-r+1)
r-permutations of a set with n elements

* Proof: Use the product rule, the first element can
be chosen in n ways. There are n-1 ways to chose
the 24 element. Likewise, there are n-2 ways to
choose 3 element, and so on until there are
exactly n-(r-1)=n-r+1 ways to choose the r-th
element. Thus, there are n:(n-1)-(n-2)...(n-r+1)
r-permutations of the set
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r-permutation

* Note that p(n,0)=1 whenever n is a nonnegative
integer as there is exactly one way to order zero
element

e Corollary 1: If n and r are integers with 0<r<n, then
P(n,r)=n!/(n-r)!

* Proof: When n and r are integers with 1<r<n, by
Theorem 1 we have

P(n,r)=n(n-1)...(n-r+1)=n!/(n-r)!

 Asn!/(n-0)!=1 when n is a nonnegative integer,
we have P(n,r)=n!/(n-r)! also holds when r=0
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r-permutation

* By Theorem 1, we know that if n is a positive
integer, then P(n,n)=n!

 Example: How many ways are there to select a
15t prize winner, a 2"9 prize winner, and a 3™
prize winner from 100 different contestants?

* P(100,3)=100x99x98=970,200
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Example

* How many permutations of the letters
ABCDEFGH contain string ABC?

 As ABC must occur as a block, we can find the
answer by finding the permutations of 6
letters, the block ABC and the individual
letters, D,E,F,G, and H. As these 6 objects must
occur in any order, there are 6!=720
permutations of the letters ABCDEFGH in
which ABC occurs in a block
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Combinations

* How many different committees of 3 students can be formed
from a group of 4 students?

e We need to find the number of subsets with 3 elements from
the set containing 4 students

 We see that there are 4 such subsets, one for each of the 4
students as choosing 4 students is the same as choosing one
of the 4 students to leave out of the group

* This means there are 4 ways to choose 3 students for the
committee, where th order in which these students are
chosen does not matter
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r-combination

e An r-combination of elements of a set is an
unordered selection of r elements from the
set

* An r-combination is simply a subset of the set
with r elements

 Denote by C(n,r). Note that C(n,r) is also
denoted by @ and is called a binomial
coefficient
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Example

e LetSbetheset{l, 2,3,4}. Then{], 3, 4}isa
3-combination from S

 We see that C(4,2)=6, as the 2-combination of
{a, b, c, d} are 6 subsets {a, b}, {a, c}, {a, d}, {b,
c}, {b, d}, and {c, d}

50



r-combination

 We can determine the number of r-
combinations of a set with n elements using
the formula for the number of r-permutations
of a set

* Note that the r-permutations of a set can be
obtained by first forming r-combinations and
then ordering the elements in these
combinations
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r-combination

* The number of r-combinations of a set with n elements,
where n is a nonnegative integer and r is an integer with
0<r<n equals

n!
chr= ri(n—r)!

* Proof: The r-permutations of the set can be obtained by
forming the C(n,r) r-combinations and then ordering the
elements in each r-permutation which can be done in P(1,r)
ways

P(n,r)=C(n,r)-P(r,r)
P(n,r) nl/(n-r)l  nl
P(r,r) riY(r=r)! ri(n=r)!

C(n,r) =
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r-combination

* When computing r-combination

nt P(hr) n(n-1)---(n-r+1)
r!(n—r)!_ N r!

C(n,r) =

thus canceling out all the terms in the larger
factorial
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Example

* How many poker hands of 5 cards can be dealt
from a standard deck of 52 cards? Also, how
many ways are there to select 47 cards from a
standard deck of 52 cards?

* Choose 5 out of 52 cards: C(52,5)=52!/(5147!)=
(52x51x50x49x48)/(5x4x3x2x1)=26x17x10x49
x12=2,598,960

* C(52,47)=521/(47!'5")=2,5,98,960
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Corollary 2

* Let n and r be nonnegative integers with r<n.
Then C(n,r)=C(n,n-r)
* Proof:

n!
c(n.n)= ri(n—r)!

n! n!

C(n,n—r)= : =
(n=n)!(n—=(n=r)! (n—=r)!r!
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Combinatorial proof

* A combinatorial proof of an identity is a proof
that uses counting arguments to prove that
both sides of the identity count the same
objects but in different ways

* Proof of Corollary 2: Suppose that S is a set
with n elements. Every subset A of S with r
elements corresponds to a subset of S with n-r
elements, i.e., A.Thus, C(n,r)=C(n,n-r)
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Example

* How many ways are there to select 5 players
from a 10-member tennis team?

 Choose 5 out of 10 elements, i.e., C(10,
5)=10!/(5!5!)=252

* How many bit strings of length n contain
exactly r 1s?

* This is equivalent to choose r elements from n
elements, i.e., C(n,r)
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6.4 Binomial coefficients

e The number of r-combinations form a set with
n elements is often denoted by @

e Also called as a binomial coefficient as these
numbers occur as coefficients in the
expansion of powers of binomial expressions
such as (a+b)"

* A binomial expression is simply the sum of
two terms, such as x+y
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Example

* The expansion of (x+y)3 can be found using
combinational reasoning instead of multiplying the
there terms out

* When (x+y)3=(x+y)(x+y)(x+y) is expanded, all
products of a term in the 15t sum, a term in the 2"
sum, and a term in the 3" sum are added, e.g., X3,
x%y, xy?, and y3

* To obtain a term of the form x3, an x must be chosen
in each of the sums, and this can be done in only one
way. Thus, the x3 term in the product has a
coefficient of 1
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Example

* To obtain a term of the form x?y, an x must be chosen
in 2 of the 3 sums (and consequently a y in the other
sum). Hence, the number of such terms is the .
number of 2-combinations of 3 objects, namely, @

* Similarly, the number of terms of the form xy? is the
number of ways to pick 1 of the 3 sums to obtain an
X (and consequently take a y from each of the other

. . 3
two sums), which can be donein || ways
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Example

* Consequently,

(X+ 1Y) = (X+ Y)(X+ Y)(X+ Y) = (XX + Xy + YX+ YY) (X +Y)
= XXX+ XXY + XYX+ XYY + YXX+ YXY + YYyX+ YYY

= x> +3x°y+3xy° + y°

 The binomial theorem: Let x and y be variables, and
let n be a nonnegative integer

(X-I— y)n _ i[?jxnj yj

j=0
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Binomial theorem

(X-I— y)n _ Zn:(r-]jxnj yj

i—o\ J

—nx”+nx”‘1+nx”‘22+ + " x”‘1+n "
1o 1 y 2 y n—1y ny

* Proof: A combinatorial proof of the theorem is given. The
terms in the product when it is expanded are of the form x"Jy!
for j=0,1,2..., n

* To count the number of terms of the form x™y/ , note that to
obtain such a term it is necessary to choose n-j x’s from the n

sums (so that the other j terms in the product are y’s). )
. y

Therefore, the coefficients of x™yi is | " | which is equal to
-]
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Example

404 .
(x+y)* =me‘“y’

j=0

et (-

* What is the coefficient of x*?y*3 in the
expansion of (x+y)?>?

25 25!
= = 5,200,300
13 ) 1312
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Example

* What is the coefficient of x'?y'3 in the
expansion of (2x-3y)?°?

25 . .
(2x=3y)* = Z[ j j(ZX)25‘(—3Y)‘

j=0

* Consequently, the coefficient of xt%y!3 is

25 212 (_3)13 — 25' 212313
13 1312
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Corollary

* Corollary 1: Let n be a nonnegative integer.
Then

Sz

* Proof: Using Binomial theorem with x=1 and
y=1

2" =(1+1)" = j@mm = Z(Ej

k=0
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Corollary

* There is also a combinatorial proof of Corollary 1

* Proof: A set with n elements has a total of 2"
different subsets. Each subset has O elements, 1
element, 2 elements, or n elements in it. Thus, there
are @ subsets with 0 elements, ( j subsets with 1
element, . andﬁ subsets with n elements. Thus Z[ j
counts the total number of subsets of a set with n
elements,

* This shows that Z(EJ:Z

k=0
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Corollary 2

Let n be a positive integer. Then

zn:(—l)k@:o

Proof :0=0" = ((-1)+1)" = n ( j( 1)1"* Z( j( 1)~

.



Corollary 3

Let n be a non - negative interger. Then

C k n __nN
kzzc;z (kj_s

N, . &(n
Proof : (2+1)" =Z£k]2k1” ‘ :Z(kak

k=0 k=0



Pascal identity and triangle

e Pascal’s identity: Let n and k be positive integers with n > k.

Then n+1) (' n L[n
k ) \k-1) |k
* Combinatorial proof: Let T be a set containing n+1 elements.

Let a be an element in T, and let S=T-{a} (S has n elements)
n+1
* Note that there are | | | subsets of T containing k elements.

However, a subset of T with k elements either contains a (i.e.,

a subset of k-1 elements of S) or not.
krllj subsets of k-1 elements of S, and so there are (k” J
subsets of k-1 elements containing a

n
e There are kj subsets of k elements of T that do not contain a

. Thus £n+1 :( n jJ{nj
k k-1 K 69
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Pascal identity and triangle

* Can also prove the Pascal identity with
algebraic manipulation of ”j

Kk
n+1: (n+1)!
k ) ki(n—k+1)!
n _ n! _ kn! _ kn!
k-1) (k=D!(n—-k+D! (k-D'k(n—k+1)! Kk!(n—k-+1)!
nj: . (n—k+hn!  (n—k+Dn!
k) Kki(n=k)! KkI(n—K){(n—k+1) k!(n—k+1)!
n j{nj ki (n—k+Dn! _ (k+n—k+Dn!_ (n+dhnt _ (n+D)!
k-1) (k) Kk!(n- k+1)' kKiin—k+1)!  kl(n—k+1)! kI(n—k+D! Kk!(n—k+1)!
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Pascal’s triangle

e Pascal’s identity is the basis for a geometric
arrangement of the binomial coefficients in a triangle

@ The McGraw-Hill Companies, Inc. all rights reserved.

(8) l each n-th row, binomial coefficients
® O P
¢) () G) By Pascal’s identiy: P

@ HOEGE O=0() T
GOOGOG )G e e e

() () GG (G s 0 10 5

(6) (1) &) &) (&) (5) () L6 15 0 15 6
\ / . 9

) (D) G GGG Q) G) L7 o235 3 a7
() () G) () () G @) G 6 I 8 2 56 0 56 28 8 |

(a) (b) -



