
6.1 Basics of counting

• Combinatorics: they study of arrangements of 
objects

• Enumeration: the counting of objects with 
certain properties (an important part of 
combinatorics)

– Enumerate the different telephone numbers 
possible in US

– The allowable password on a computer

– The different orders in which runners in a race can 
reach
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Example

• Suppose a password on a system consists of 6, 
7, or 8 characters

• Each of these characters must be a digit or a 
letter of the alphabet

• Each password must contain at least one digit

• How many passwords are there?

2



Basic counting principles

• Two basic counting principles

– Product rule

– Sum rule

• Product rule: suppose that a procedure can be 
broken down into a sequence of two tasks

• If there are n1 ways to do the 1st task, and 
each of these there are n2 ways to do the 2nd

task, then there are n1∙n2 ways to do the 
procedure
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Example

• The chairs of a room to be labeled with a 
letter and a positive integer not exceeding 
100. What is the largest number of chairs that 
can be labeled differently?

• There are 26 letters to assign for the 1st part 
and 100 possible integers to assign for the 2nd

part, so there are 26∙100=2600 different 
ways to label chairs
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Product rule

• Suppose that a procedure is carried out by 
performing the tasks T1, T2, …, Tm in sequence. 
If each task Ti, i=1, 2, …, n can be done in ni

ways, regardless of how the previous tasks 
were done, then there are n1∙n2∙ ..∙nm ways to 
carry out the procedure
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Example

• How many different license plates are 
available if each plate contains a sequence of 
3 letters followed by 3 digits (and non 
sequences of letters are prohibited, even if 
they are obscene)?

• License plate _ _ _   _ _ _ : There are 26 
choices for each letter and 10 choices for each 
digit. So, there are 26∙26∙26∙10∙10∙10 = 
17,576,000 possible license plates
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Counting functions

• How many functions are there from a set with 
m elements to a set with n elements?

• A function corresponds to one of the n 
elements in the codomain for each of the m 
elements in the domain

• Hence, by product rule there are n∙n…∙n=nm

functions from a set with m elements to one 
with n elements
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Counting one-to-one functions

• How many one-to-one functions are there from a set with m 
elements to one with n elements?

• First note that when m>n there are no one-to-one functions 
from a set with m elements to one with n elements

• Let m≤n. Suppose the elements in the domain are a1, a2, …, 
am. There are n ways to choose the value for the value at a1

• As the function is one-to-one, the value of the function at a2

can be picked in n-1 ways (the value used for a1 cannot be 
used again)

• Using the product rule, there are n(n-1)(n-2)…(n-m+1) one-to-
one functions from a set with m elements to one with n 
elements
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Example

• From a set with 3 elements to one with 5 
elements, there are 5∙4∙3=60 one-to-one 
functions
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Example

• The format of telephone numbers in north 
America is specified by a numbering plan

• It consists of 10 digits, with 3-digit area code, 
3-digit office code and 4-digit station code

• Each digit can take one form of

– X: 0, 1, …, 9 

– N: 2, 3, …, 9

– Y: 0, 1
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Example

• In the old plan, the formats for area code, office 
code, and station code are NYX, NNX, and XXXX, 
respectively

• So the phone numbers had NYX-NNX-XXXX

• NYX: 8∙2∙10=160 area codes 

• NNX: 8∙8∙10=640 office codes

• XXXX:10∙10∙10∙10=10,000 station codes

• So, there are 160∙640∙10,000 = 1,024,000,000 
phone numbers 
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Example

• In the new plan, the formats for area code, office 
code, and station code are NXX, NXX, and XXXX, 
respectively

• So the phone numbers had NXX-NXX-XXXX

• NXX: 8∙10∙10=800 area codes 

• NXX: 8∙10∙10=800 office codes

• XXXX:10∙10∙10∙10=10,000 station codes

• So, there are 800∙800∙10,000 = 6,400,000,000 
phone numbers 
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Product rule

• If A1, A2, …, Am are finite sets, then the 
number of elements in the Cartesian product 
of these sets is the product of the number of 
elements in each set

• |A1 ⨯A2 ⨯… ⨯Am|=|A1| ⨯|A2| ⨯ … ⨯|Am|
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Sum rule

• If a task can be done either in one of n1 ways or in 
one of n2 ways, where none of the set of n1 ways is 
the same as any of the set of n2 ways, then there are 
n1+n2 ways to do the task

• Example: suppose either a member of faculty or a 
student in CSE is chosen as a representative to a 
university committee. How many different choices 
are there for this representative if there are 8 
members in faculty and 200 students?

• There are 8+200=208 ways to pick this representative
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Sum rule

• If A1, A2, …, Am are disjoint finite sets, then the 
number of elements in the union of these sets 
is as follows

|A1⋃A2 ⋃… ⋃Am|=|A1|+|A2|+…+|Am|
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More complex counting problems

• In a version of the BASIC programming language, the name of 
a variable is a string of 1 or 2 alphanumeric characters, where 
uppercase and lowercase letters are not distinguished. 

• Moreover, a variable name must begin with a letter and must 
be different from the five strings of two characters that are 
reserved for programming use

• How many different variables names are there?

• Let V1 be the number of these variables of 1 character, and 
likewise V2 for variables of 2 characters

• So, V1=26, and V2=26∙36-5=931

• In total, there are 26+931=957 different variables
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Example

• Each user on a computer system has a password, which is 6 to 
8 characters long, where each character is an uppercase letter 
or a digit. Each password must contain at least one digit. How 
many possible passwords are there?

• Let P be the number of all possible passwords and P=P6+P7+P8

where Pi is a password of i characters

• P6=366-266=1,867,866,560 

• P7=367-267=70,332,353,920

• P8=368-268=208,827,064,576

• P=P6+P7+P8=2,684,483,063,360
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Example: Internet address

• Internet protocol (IPv4)
– Class A: largest network

– Class B: medium-sized networks

– Class C : smallest networks

– Class D: multicast (not assigned for IP address)

– Class E: future use 

– Some are reserved: netid 1111111, hostid all 1’s and 0’s 

• Neither class D or E addresses are assigned as the IPv4 addresses  

• How may different IPv4 addresses are available?
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Example: Internet address

• Let the total number of address be x, and x=xA+xB+xC

• Class A: there are 27-1=127 netids (1111111 is reserved). For each netid, 
there are 224-2=16,777,214 hostids (as hostids of all 0s and 1s are 
reserved), so there are xA=127∙16,777,214=2,130,706,178 addresses

• Class B, C: 214=16,384 Class B netids and 221=2,097,152 Class C netids. 
216-2=65,534 Class B hostids, and 28-2=254 Class C hostids. So, 
xB=1,073,709,056, and xC=532,676,608

• So, x=xA+xB+xC=3,737,091,842
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Inclusion-exclusion principle

• Suppose that a task can be done in n1 or in n2

ways, but some of the set of n1 ways to do the 
task are the same as some of the n2 ways to 
do the task

• Cannot simply add n1 and n2, but need to 
subtract the number of ways to the task that is 
common in both sets

• This technique is called principle of inclusion-
exclusion or subtraction principle
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Example

• How many bit strings of length 8 either start 
with a 1 or end with two bits 00?

• 1 _ _ _ _ _ _ _: 27=128 ways

• _ _ _ _ _ _ 00: 26=64 ways

• 1 _ _ _ _ _ 00: 25=32 ways

• Total number of possible bit strings is 128+64-
32=160 
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Inclusion-exclusion principle

• Using sets to explain

|A1⋃A2|=|A1|+|A2|-|A1⋂A2|
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Tree diagrams

• How many bit strings of length 4 do not have two consecutive 
1s? 

• In some cases, we can use tree diagrams for counting
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Example

• A playoff between 2 teams consists of at most 5 games. The 
1st team that wins 3 games wins the playoff. How many 
different ways are there? 
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Example

• Suppose a T-shirt comes in 5 different sizes: S, M, L, XL, and 
XXL. Further suppose that each size comes in 4 colors, white, 
green, red, and black except for XL which comes only in red, 
green and black, and XXL which comes only in green and 
black. How many possible size and color of the T-shirt?
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6.2 Pigeonhole principle

• Suppose that a flock of 20 pigeons flies into a set of 
19 pigeonholes to roost

• Thus, at least 1 of these 19 pigeonholes must have at 
least 2 pigeons

• Why? If each pigeonhole had at most one pigeon in 
it, at most 19 pigeons, 1 per hole, could be 
accommodated

• If there are more pigeons than pigeonholes, then 
there must be at least 1 pigeonhole with at least 2 
pigeons in it
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Example
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Pigeonhole principle

• Theorem 1: If k is a positive integer and k+1 or more 
objects are placed into k boxes, then there is at least 
one box containing two or more of the objects

• Proof: suppose that none of the k boxes contains 
more than one object. Then the total number of 
objects would be at most k. This is a contradiction as 
there are at least k+1 objects

• Also known as Dirichlet drawer principle
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Pigeonhole principle

• Corollary 1: A function f from a set with k+1 or more 
elements to a set with k elements is not one-to-one

• Proof: Suppose that for each element y in the 
codomain of f we have a box that contains all 
elements x of the domain f s.t. f(x)=y

• As the domain contains k+1 or more elements and 
the codomain contain only k elements, the 
pigeonhole principle tells us that one of these boxes 
contains 2 or more elements x of the domain

• This means that f cannot be one-to-one

29



Example

• Among any group of 367 people, there must 
be at least 2 with the same birthday

• How many students must be in a class to 
guarantee that at least 2 students receive the 
same score on the final exam, if the exam is 
graded on a scale from 0 to 100 points

30



Generalized pigeonhole principle

• Theorem 2: If N objects are placed into k boxes, then 
there is at least one box containing at 
least⎾N/k⏋objects 

• Proof: Proof by contradiction. Suppose that none 
of the boxes contains more than ⎾N/k⏋-1 objects. 
Then the total number of objects is at most 
k(⎾N/k⏋-1)<k((N/k+1)-1)=N

where the inequality ⎾N/k⏋<N/k+1 is used

• This is a contradiction as there are a total of N 
objects
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Generalized pigeonhole principle

• A common type of problem asks for the minimum 
number of objects s.t. at least r of these objects must 
be in one of k boxes when these objects are 
distributed among boxes

• When we have N objects, the generalized pigeonhole 
principle tells us there must be at least r objects in 
one of the boxes as long as ⎾N/k⏋≥ r. Recall 
N/k+1>⎾N/k⏋. The smallest integer N with 
N/k>r-1, i.e., N=k(r-1)+1 is the smallest integer 
satisfying the inequality ⎾N/k⏋≥ r
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Example

• Among 100 people there are at least ⎾100/12⏋= 9 
who were born in the same month

• What is the minimum number of students 
required in a discrete mathematics class to be sure 
that at least 6 will receive the same grade, if there 
are 5 possible grades,?

• The minimum number of studeA, B, C, D, and Fnts 
needed to ensure at least 6 students receive the 
same grade is the smallest integer N s.t. 
⎾N/5⏋=6. Thus, the smallest N=5∙5+1=26
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Example

• How many cards must be selected from a standard 
deck of 52 cards to guarantee that a least 3 cards of 
the same suit are chosen?

• Suppose there are 4 boxes, one for each suit. If N 
cards are selected, using the generalized pigeonhole 
principle, there is at lest one box containing at least 
⎾N/4⏋cards

• Thus to have ⎾N/4⏋≥ 3 , the smallest N is 
2∙4+1=9. So at least 9 cards need to be selected
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Example

• How many cards must be selected to guarantee that 
at least 3 hearts are selected?

• We do not use the generalized pigeonhole principle 
to answer this as we want to make sure that there 
are 3 hearts, not just 3 cards of one suit

• Note in the worst case, we can select all the clubs, 
diamonds, and spades, 39 cards in all before 
selecting a single heart

• The next 3 cards will be all hearts, so we may need to 
select 42 cars to guarantee 3 hearts are selected
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Applications of Pigeonhole 
principle
• During a month with 30 days, a baseball team plays at least one game a 

day, but no more than 45 games. Show that there must be a period of 
some number of consecutive days during which the team must play 
exactly 14 games

• Let aj be the number of games played on or before jth day of the month. 
Then a1, a2, …, a30 is an increasing sequence of distinctive positive integers 
with 1≤aj ≤45. Moreover a1+14, a2+14, …, a30+14 is also an increasing 
sequence of distinct positive integers with 15 ≤aj+14 ≤59

• The 60 positive integers, a1, a2, …, a30, a1+14, a2+14, …, a30+14 are all less 
than or equal to 59. Hence, by the pigeonhole principle, two of these 
integers must be equal, i.e., there must be some I and j with ai=aj+14. This 
means exactly 14 games were played from day j+1 to day i
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Ramsey theory

• Example: Assume that in a group of 6 people, each 
pair of individuals consists of two friends or 2 
enemies. Show that there are either 3 mutual friends 
or 3 mutual enemies in the group

• Let A be one of the 6 people. Of the 5 other people 
in the group, there are either 3 or more who are 
friends of A, or 3 or more are enemies of A

• This follows from the generalized pigeonholes 
principles, as 5 objects are divided into two sets, one 
of the sets has at least ⎾5/2⏋=3 elements
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Ramsey number

• Ramsey number R(m, n) where m and n are positive 
integers greater than or equal to 2, denotes the 
minimum number of people at a party s.t. there are 
either m mutual friends or n mutual enemies, 
assuming that every pair of people at the party are 
friends or enemies

• In the previous example, R(3,3)≤6

• We conclude that R(3,3)=6 as in a group of 5 people 
where every two people are friends or enemies, 
there may not be 3 mutual friends or 3 mutual 
enemies
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6.3 Permutations & Combinations

• Counting: 

– Find out the number of ways to select a particular 
number of elements from a set

– Sometimes the order of these elements matter

• Example:

– How many ways we can select 3 students from a 
group of 5 students?

– How many different ways they stand in line for 
picture?
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Permutation

• How many ways can we select 3 students from a 
group of 5 to stand in lines for a picture? 

• First note that the order in which we select students 
matters

• There are 5 ways to select the 1st student

• Once the 1st student is selected, there are 4 ways to 
select the 2nd student in line. By product rule, there 
are 5x4x3=60 ways to select 3 student from a group 
of 5 students to stand line for picture
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Permutation

• How many ways can we arrange all 5 in a line 
for a picture?

• By product rule, we have 5x4x3x2x1=120 ways 
to arrange all 5 students in a line for a picture
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Permutation

• A permutation of a set of distinct objects is an 
ordered arrangement of these objects

• An ordered arrangement of r elements of a set is 
called an r-permutation

• The number of r-permutation of a set with n element 
is denoted by P(n,r). We can find P(n,r) using the 
product rule

• Example: Let S={1, 2, 3}. The ordered arrangement 3, 
1, 2 is a permutation of S. The ordered arrangement 
3, 2, is a 2-permutation of S
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Permutation

• Let S={a, b, c}. The 2-permutation of S are the 
ordered arrangements, a, b; a, c; b, a; b, c; c, 
a; and c, b

• Consequently, there are 6 2-permutation of 
this set with 3 elements

• Note that there are 3 ways to choose the 1st

element and then 2 ways to choose the 2nd

element

• By product rule, there are P(3,2)=3 x 2 = 6
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r-permutation

• Theorem 1: If n is a positive and r is an integer with 
1≤r≤n, then there are

P(n,r)=n(n-1)(n-2)…(n-r+1)

r-permutations of a set with n elements

• Proof: Use the product rule, the first element can 
be chosen in n ways. There are n-1 ways to chose 
the 2nd element. Likewise, there are n-2 ways to 
choose 3rd element, and so on until there are 
exactly n-(r-1)=n-r+1 ways to choose the r-th 
element. Thus, there are n∙(n-1)∙(n-2)… ∙(n-r+1) 
r-permutations of the set
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r-permutation

• Note that p(n,0)=1 whenever n is a nonnegative 
integer as there is exactly one way to order zero 
element

• Corollary 1: If n and r are integers with 0≤r≤n, then 
P(n,r)=n!/(n-r)!

• Proof: When n and r are integers with 1≤r≤n, by 
Theorem 1 we have 

P(n,r)=n(n-1)…(n-r+1)=n!/(n-r)!

• As n!/(n-0)!=1 when n is a nonnegative integer, 
we have P(n,r)=n!/(n-r)! also holds when r=0
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r-permutation

• By Theorem 1, we know that if n is a positive 
integer, then P(n,n)=n!

• Example: How many ways are there to select a 
1st prize winner, a 2nd prize winner, and a 3rd

prize winner from 100 different contestants?

• P(100,3)=100x99x98=970,200
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Example

• How many permutations of the letters 
ABCDEFGH contain string ABC?

• As ABC must occur as a block, we can find the 
answer by finding the permutations of 6 
letters, the block ABC and the individual 
letters, D,E,F,G, and H. As these 6 objects must 
occur in any order, there are 6!=720 
permutations of the letters ABCDEFGH in 
which ABC occurs in a block 
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Combinations

• How many different committees of 3 students can be formed 
from a group of 4 students?

• We need to find the number of subsets with 3 elements from 
the set containing 4 students

• We see that there are 4 such subsets, one for each of the 4 
students as choosing 4 students is the same as choosing one 
of the 4 students to leave out of the group

• This means there are 4 ways to choose 3 students for the 
committee, where th order in which these students are 
chosen does not matter
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r-combination

• An r-combination of elements of a set is an 
unordered selection of r elements from the 
set

• An r-combination is simply a subset of the set 
with r elements

• Denote by C(n,r). Note that C(n,r) is also 
denoted by        and is called a binomial 
coefficient
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Example

• Let S be the set {1, 2, 3, 4}. Then {1, 3, 4} is a 
3-combination from S

• We see that C(4,2)=6, as the 2-combination of 
{a, b, c, d} are 6 subsets {a, b}, {a, c}, {a, d}, {b, 
c}, {b, d}, and {c, d}
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r-combination

• We can determine the number of r-
combinations of a set with n elements using 
the formula for the number of r-permutations 
of a set

• Note that the r-permutations of a set can be 
obtained by first forming r-combinations and 
then ordering the elements in these 
combinations
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r-combination

• The number of r-combinations of a set with n elements, 
where n is a nonnegative integer and r is an integer with 
0≤r≤n equals

• Proof: The r-permutations of the set can be obtained by 
forming the C(n,r) r-combinations and then ordering the 
elements in each r-permutation which can be done in P(r,r) 
ways
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r-combination

• When computing r-combination

thus canceling out all the terms in the larger 
factorial
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Example

• How many poker hands of 5 cards can be dealt 
from a standard deck of 52 cards? Also, how 
many ways are there to select 47 cards from a 
standard deck of 52 cards?

• Choose 5 out of 52 cards: C(52,5)=52!/(5!47!)= 
(52x51x50x49x48)/(5x4x3x2x1)=26x17x10x49
x12=2,598,960

• C(52,47)=52!/(47!5!)=2,5,98,960
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Corollary 2

• Let n and r be nonnegative integers with r≤n. 
Then C(n,r)=C(n,n-r)

• Proof:
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Combinatorial proof

• A combinatorial proof of an identity is a proof 
that uses counting arguments to prove that 
both sides of the identity count the same 
objects but in different ways

• Proof of Corollary 2: Suppose that S is a set 
with n elements. Every subset A of S with r 
elements corresponds to a subset of S with n-r 
elements, i.e.,     . Thus, C(n,r)=C(n,n-r)
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Example

• How many ways are there to select 5 players 
from a 10-member tennis team?

• Choose 5 out of 10 elements, i.e., C(10, 
5)=10!/(5!5!)=252

• How many bit strings of length n contain 
exactly r 1s?

• This is equivalent to choose r elements from n 
elements, i.e., C(n,r)
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6.4 Binomial coefficients

• The number of r-combinations form a set with 
n elements is often denoted by      

• Also called as a binomial coefficient as these 
numbers occur as coefficients in the 
expansion of powers of binomial expressions 
such as (a+b)n

• A binomial expression is simply the sum of 
two terms, such as x+y
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Example

• The expansion of (x+y)3 can be found using 
combinational reasoning instead of multiplying the 
there terms out

• When (x+y)3=(x+y)(x+y)(x+y) is expanded, all 
products of a term in the 1st sum, a term in the 2nd

sum, and a term in the 3rd sum are added, e.g., x3, 
x2y, xy2, and y3

• To obtain a term of the form x3, an x must be chosen 
in each of the sums, and this can be done in only one 
way. Thus, the x3 term in the product has a 
coefficient of 1
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Example

• To obtain a term of the form x2y, an x must be chosen 
in 2 of the 3 sums (and consequently a y in the other 
sum). Hence, the number of such terms is the 
number of 2-combinations of 3 objects, namely, 

• Similarly, the number of terms of the form xy2 is the 
number of ways to pick 1 of the 3 sums to obtain an 
x (and consequently take a y from each of the other 
two sums), which can be done in        ways 
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Example

• Consequently, 

• The binomial theorem: Let x and y be variables, and 
let n be a nonnegative integer
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Binomial theorem

• Proof: A combinatorial proof of the theorem is given. The 
terms in the product when it is expanded are of the form xn-jyj 

for j=0,1,2…, n

• To count the number of terms of the form xn-jyj , note that to 
obtain such a term it is necessary to choose n-j x’s from the n 
sums (so that the other j terms in the product are y’s). 
Therefore, the coefficients of xn-jyj is            which is equal to  
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Example

• What is the coefficient of x12y13 in the 
expansion of (x+y)25?
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Example

• What is the coefficient of x12y13 in the 
expansion of (2x-3y)25?

• Consequently, the coefficient of x12y13 is
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Corollary

• Corollary 1: Let n be a nonnegative integer. 
Then

• Proof: Using Binomial theorem with x=1 and 
y=1
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Corollary

• There is also a combinatorial proof of Corollary 1

• Proof: A set with n elements has a total of 2n

different subsets. Each subset has 0 elements, 1 
element, 2 elements, or n elements in it. Thus, there 
are      subsets with 0 elements,       subsets with 1 
element, … and      subsets with n elements. Thus           
counts the total number of subsets of a set with n 
elements,  

• This shows that 
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Corollary 2
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Corollary 3
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Pascal identity and triangle

• Pascal’s identity: Let n and k be positive integers with n ≥ k. 
Then

• Combinatorial proof: Let T be a set containing n+1 elements. 
Let a be an element in T, and let S=T-{a} (S has n elements)

• Note that there are             subsets of T containing k elements. 
However, a subset of T with k elements either contains a (i.e., 
a subset of k-1 elements of S) or not. 

• There are           subsets of k-1 elements of S, and so there are             

subsets of k-1 elements containing a

• There are         subsets of k elements of T that do not contain a

• Thus 
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Pascal identity and triangle

• Can also prove the Pascal identity with 
algebraic manipulation of 
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Pascal’s triangle

• Pascal’s identity is the basis for a geometric 
arrangement of the binomial coefficients in a triangle
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